Phylum: Anthropods Class: Arachnida Kingdom: Animalia Domain: Eukarya
Wednesday, October 29, 2008
Tuesday, October 28, 2008
Spontaneous generation
In the natural sciences, abiogenesis, or origin of life, is the study of how life on Earth emerged from inanimate organic and inorganic molecules. Scientific research theorizes that abiogenesis occurred sometime between 4.4[1] and 3.5[2] billion years ago. By 2.4 billion years ago the ratio of stable isotopes of carbon (12C and 13C), iron (56Fe, 57Fe, and 58Fe) and sulfur (32S, 33S, 34S, and 36S) points to a biogenic origin of minerals and sediments[3][4] and molecular biomarkers indicate photosynthesis.[5][6]
Several hypotheses concerning early life have been proposed, most notably the iron-sulfur world theory (metabolism without genetics) and the RNA world hypothesis (RNA lifeforms).
In 1668, Francesco Redi, an Italian physician, did an experiment with flies and wide-mouth jars containing meat. This was a true scientific experiment — many people say this was the first real experiment — containing the following elements:
After this experiment, people were willing to acknowledge that “larger” organisms didn’t arise by spontaneous generation, but had to have parents. With the development and refinement of the microscope in the 1600s, people began seeing all sorts of new life forms such as yeast and other fungi, bacteria, and various protists. No one knew from where these organisms came, but people figured out they were associated with things like spoiled broth. This seemed to add new evidence to the idea of spontaneous generation — it seemed perfectly logical that these minute organisms should arise spontaneously. When Jean Baptiste Lamarck proposed his theory of evolution, to reconcile his ideas with Aristotle’s Scala naturae, he proposed that as creatures strive for greater perfection, thus move up the “ladder,” new organisms arise by spontaneous generation to fill the vacated places on the lower rungs.
In 1745 - 1748, John Needham, a Scottish clergyman and naturalist showed that microorganisms flourished in various soups that had been exposed to the air. He claimed that there was a “life force” present in the molecules of all inorganic matter, including air and the oxygen in it, that could cause spontaneous generation to occur, thus accounting for the presence of bacteria in his soups. He even briefly boiled some of his soup and poured it into “clean” flasks with cork lids, and microorganisms still grew there.
A few years later (1765 - 1767), Lazzaro Spallanzani, an Italian abbot and biologist, tried several variations on Needham’s soup experiments. First, he boiled soup for one hour, then sealed the glass flasks that contained it by melting the mouths of the flasks shut. Soup in those flasks stayed sterile. He then boiled another batch of soup for only a few minutes before sealing the flasks, and found that microorganisms grew in that soup. In a third batch, soup was boiled for an hour, but the flasks were sealed with real-cork corks (which, thus, were loose-fitting enough to let some air in), and microorganisms grew in that soup. Spallanzani concluded that while one hour of boiling would sterilize the soup, only a few minutes of boiling was not enough to kill any bacteria initially present, and the microorganisms in the flasks of spoiled soup had entered from the air.
This initiated a heated argument between Needham and Spallanzani over sterilization (boiled broth in closed vs. open containers) as a way of refuting spontaneous generation. Needham claimed that Spallanzani’s “over-extensive” boiling used to sterilize the containers had killed the “life force.” He felt that bacteria could not develop (by spontaneous generation) in the sealed containers because the life force could not get in, but in the open container, the broth rotted because it had access to fresh air, hence the life force inherent in its molecules, which contained and replenished the life force needed to trigger spontaneous generation. In the minimally-boiled flasks, he felt the boiling was not severe enough to destroy the life force, so bacteria were still able to develop.
By 1860, the debate had become so heated that the Paris Academy of Sciences offered a prize for any experiments that would help resolve this conflict. The prize was claimed in 1864 by Louis Pasteur, as he published the results of an experiment he did to disproved spontaneous generation in these microscopic organisms.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.
Several hypotheses concerning early life have been proposed, most notably the iron-sulfur world theory (metabolism without genetics) and the RNA world hypothesis (RNA lifeforms).
In 1668, Francesco Redi, an Italian physician, did an experiment with flies and wide-mouth jars containing meat. This was a true scientific experiment — many people say this was the first real experiment — containing the following elements:
After this experiment, people were willing to acknowledge that “larger” organisms didn’t arise by spontaneous generation, but had to have parents. With the development and refinement of the microscope in the 1600s, people began seeing all sorts of new life forms such as yeast and other fungi, bacteria, and various protists. No one knew from where these organisms came, but people figured out they were associated with things like spoiled broth. This seemed to add new evidence to the idea of spontaneous generation — it seemed perfectly logical that these minute organisms should arise spontaneously. When Jean Baptiste Lamarck proposed his theory of evolution, to reconcile his ideas with Aristotle’s Scala naturae, he proposed that as creatures strive for greater perfection, thus move up the “ladder,” new organisms arise by spontaneous generation to fill the vacated places on the lower rungs.
In 1745 - 1748, John Needham, a Scottish clergyman and naturalist showed that microorganisms flourished in various soups that had been exposed to the air. He claimed that there was a “life force” present in the molecules of all inorganic matter, including air and the oxygen in it, that could cause spontaneous generation to occur, thus accounting for the presence of bacteria in his soups. He even briefly boiled some of his soup and poured it into “clean” flasks with cork lids, and microorganisms still grew there.
A few years later (1765 - 1767), Lazzaro Spallanzani, an Italian abbot and biologist, tried several variations on Needham’s soup experiments. First, he boiled soup for one hour, then sealed the glass flasks that contained it by melting the mouths of the flasks shut. Soup in those flasks stayed sterile. He then boiled another batch of soup for only a few minutes before sealing the flasks, and found that microorganisms grew in that soup. In a third batch, soup was boiled for an hour, but the flasks were sealed with real-cork corks (which, thus, were loose-fitting enough to let some air in), and microorganisms grew in that soup. Spallanzani concluded that while one hour of boiling would sterilize the soup, only a few minutes of boiling was not enough to kill any bacteria initially present, and the microorganisms in the flasks of spoiled soup had entered from the air.
This initiated a heated argument between Needham and Spallanzani over sterilization (boiled broth in closed vs. open containers) as a way of refuting spontaneous generation. Needham claimed that Spallanzani’s “over-extensive” boiling used to sterilize the containers had killed the “life force.” He felt that bacteria could not develop (by spontaneous generation) in the sealed containers because the life force could not get in, but in the open container, the broth rotted because it had access to fresh air, hence the life force inherent in its molecules, which contained and replenished the life force needed to trigger spontaneous generation. In the minimally-boiled flasks, he felt the boiling was not severe enough to destroy the life force, so bacteria were still able to develop.
By 1860, the debate had become so heated that the Paris Academy of Sciences offered a prize for any experiments that would help resolve this conflict. The prize was claimed in 1864 by Louis Pasteur, as he published the results of an experiment he did to disproved spontaneous generation in these microscopic organisms.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.
Homologous structures
Evidence from Living Organisms
By examining fossils and by determining their relative and absolute ages, scientists have collected evidence that supports the theory that species changed over time. Further evidence is derived from living organisms. In order to determine if species change scientists compare common ancestry, structure, biochemistry, and development of organisms alive today. As you read this section, study this evidence and critically evaluate whether it indicates that species may have arisen by descent and modification from ancestral species. Evidence of Common Ancestry
If species change over time, then scientists should be able to cite examples showing that a group of living species may have come from a common ancestor. Let us examine one of many cases for which this seems to be true. Gracing the islands of Hawaii is a family of birds commonly called the Hawaiian honeycreepers. All Hawaiian honeycreepers have similarities in skeletal and muscle structure that indicate they are closely related. However, each of the Hawaiian honeycreeper species has a bill specialized for eating certain foods. Scientists suggest that all 23 honeycreeper species apparently arose from a single species that migrated to Hawaii.
If a bat, a human, an alligator, and a penguin all evolved from a common ancestor, then they should share common anatomical traits. In fact, they do. Compare the forelimbs of the human, the bat, the penguin, and the alligator. Find the humerus, radius, ulna, and carpals in each forelimb. Though the limbs look strikingly different on the outside and though they vary in function, they are very similar in skeletal structure. More significantly, they are derived from the same structures in the embryo. Structures that are embryologically similar, but have different functions, are called homologous structures. Though these animals look different, a comparison of homologous structures indicates that they are quite similar. This suggests that these animals evolved from a common ancestor.
By examining fossils and by determining their relative and absolute ages, scientists have collected evidence that supports the theory that species changed over time. Further evidence is derived from living organisms. In order to determine if species change scientists compare common ancestry, structure, biochemistry, and development of organisms alive today. As you read this section, study this evidence and critically evaluate whether it indicates that species may have arisen by descent and modification from ancestral species. Evidence of Common Ancestry
If species change over time, then scientists should be able to cite examples showing that a group of living species may have come from a common ancestor. Let us examine one of many cases for which this seems to be true. Gracing the islands of Hawaii is a family of birds commonly called the Hawaiian honeycreepers. All Hawaiian honeycreepers have similarities in skeletal and muscle structure that indicate they are closely related. However, each of the Hawaiian honeycreeper species has a bill specialized for eating certain foods. Scientists suggest that all 23 honeycreeper species apparently arose from a single species that migrated to Hawaii.
If a bat, a human, an alligator, and a penguin all evolved from a common ancestor, then they should share common anatomical traits. In fact, they do. Compare the forelimbs of the human, the bat, the penguin, and the alligator. Find the humerus, radius, ulna, and carpals in each forelimb. Though the limbs look strikingly different on the outside and though they vary in function, they are very similar in skeletal structure. More significantly, they are derived from the same structures in the embryo. Structures that are embryologically similar, but have different functions, are called homologous structures. Though these animals look different, a comparison of homologous structures indicates that they are quite similar. This suggests that these animals evolved from a common ancestor.
Speciation
Speciation is the evolutionary process by which new biological species arise. There are four modes of natural speciation, based on the extent to which speciating populations are geographically isolated from one another: allopatric, peripatric, parapatric, and sympatric. Speciation may also be induced artificially, through animal husbandry or laboratory experiments. Observed examples of each kind of speciation are provided throughout.
Defining a Species
A species is often defined as a group of individuals that actually or potentially interbreed in nature. In this sense, a species is the biggest gene pool possible under natural conditions.
For example, these happy face spiders look different, but since they can interbreed, they are considered the same species: Theridion grallator.
That definition of a species might seem cut and dried, but it is not—in nature, there are lots of places where it is difficult to apply this definition. For example, many bacteria reproduce mainly asexually. The bacterium shown at right is reproducing asexually, by binary fission. The definition of a species as a group of interbreeding individuals cannot be easily applied to organisms that reproduce only or mainly asexually.
Also, many plants, and some animals, form hybrids in nature. Hooded crows and carrion crows look different, and largely mate within their own groups—but in some areas, they hybridize. Should they be considered the same species or separate species?
If two lineages of oak look quite different, but occasionally form hybrids with each other, should we count them as different species? There are lots of other places where the boundary of a species is blurred. It’s not so surprising that these blurry places exist—after all, the idea of a species is something that we humans invented for our own convenience!
Defining a Species
A species is often defined as a group of individuals that actually or potentially interbreed in nature. In this sense, a species is the biggest gene pool possible under natural conditions.
For example, these happy face spiders look different, but since they can interbreed, they are considered the same species: Theridion grallator.
That definition of a species might seem cut and dried, but it is not—in nature, there are lots of places where it is difficult to apply this definition. For example, many bacteria reproduce mainly asexually. The bacterium shown at right is reproducing asexually, by binary fission. The definition of a species as a group of interbreeding individuals cannot be easily applied to organisms that reproduce only or mainly asexually.
Also, many plants, and some animals, form hybrids in nature. Hooded crows and carrion crows look different, and largely mate within their own groups—but in some areas, they hybridize. Should they be considered the same species or separate species?
If two lineages of oak look quite different, but occasionally form hybrids with each other, should we count them as different species? There are lots of other places where the boundary of a species is blurred. It’s not so surprising that these blurry places exist—after all, the idea of a species is something that we humans invented for our own convenience!
Classification of living things
Linnaean taxonomy is a method of classifying living things, originally devised by (and named for) Carolus Linnaeus, although it has changed considerably since his time. The greatest innovation of Linnaeus, and still the most important aspect of this system, is the general use of binomial nomenclature, the combination of a genus name and a single specific epithet to uniquely identify each species of organism. For example, the human species is uniquely identified by the binomial Homo sapiens. No other species of organism can have this binomial. Prior to Linnaean taxonomy, animals were classified according to their mode of movement.
All species are classified in a ranked hierarchy, originally starting with kingdoms although domains have since been added as a rank above the kingdoms. Kingdoms are divided into phyla (singular: phylum) — for animals; the term division, used for plants and fungi, is equivalent to the rank of phylum (and the current International Code of Botanical Nomenclature allows the use of either term). Phyla (or divisions) are divided into classes, and they, in turn, into orders, families, genera (singular: genus), and species (singular: species).
Though the Linnaean system has proven robust, expansion of knowledge has led to an expansion of the number of hierarchical levels within the system, increasing the administrative requirements of the system (see, for example, ICZN), though it remains the only extant working classification system at present that enjoys universal scientific acceptance. Among the later subdivisions that have arisen are such entities as phyla, superclasses, superorders, infraorders, families, superfamilies and tribes. Many of these extra hierarchical levels tend to arise in disciplines such as entomology, whose subject matter is replete with species requiring classification. Any biological field that is species rich, or which is subject to a revision of the state of current knowledge concerning those species and their relationships to each other, will inevitably make use of the additional hierarchical levels, particularly when fossil forms are integrated into classifications originally designed for extant living organisms, and when newer taxonomic tools such as cladistics and phylogenetic nomenclature are applied to facilitate this.
There are ranks below species: in zoology, subspecies and morph; in botany, variety (varietas) and form (forma). Many botanists now use "subspecies" instead of "variety" although the two are not, strictly speaking, of equivalent rank, and "form" has largely fallen out of use.
Groups of organisms at any of these ranks are called taxa (singular: taxon) or taxonomic groups.
Subscribe to:
Posts (Atom)