In the natural sciences, abiogenesis, or origin of life, is the study of how life on Earth emerged from inanimate organic and inorganic molecules. Scientific research theorizes that abiogenesis occurred sometime between 4.4[1] and 3.5[2] billion years ago. By 2.4 billion years ago the ratio of stable isotopes of carbon (12C and 13C), iron (56Fe, 57Fe, and 58Fe) and sulfur (32S, 33S, 34S, and 36S) points to a biogenic origin of minerals and sediments[3][4] and molecular biomarkers indicate photosynthesis.[5][6]
Several hypotheses concerning early life have been proposed, most notably the iron-sulfur world theory (metabolism without genetics) and the RNA world hypothesis (RNA lifeforms).
In 1668, Francesco Redi, an Italian physician, did an experiment with flies and wide-mouth jars containing meat. This was a true scientific experiment — many people say this was the first real experiment — containing the following elements:
After this experiment, people were willing to acknowledge that “larger” organisms didn’t arise by spontaneous generation, but had to have parents. With the development and refinement of the microscope in the 1600s, people began seeing all sorts of new life forms such as yeast and other fungi, bacteria, and various protists. No one knew from where these organisms came, but people figured out they were associated with things like spoiled broth. This seemed to add new evidence to the idea of spontaneous generation — it seemed perfectly logical that these minute organisms should arise spontaneously. When Jean Baptiste Lamarck proposed his theory of evolution, to reconcile his ideas with Aristotle’s Scala naturae, he proposed that as creatures strive for greater perfection, thus move up the “ladder,” new organisms arise by spontaneous generation to fill the vacated places on the lower rungs.
In 1745 - 1748, John Needham, a Scottish clergyman and naturalist showed that microorganisms flourished in various soups that had been exposed to the air. He claimed that there was a “life force” present in the molecules of all inorganic matter, including air and the oxygen in it, that could cause spontaneous generation to occur, thus accounting for the presence of bacteria in his soups. He even briefly boiled some of his soup and poured it into “clean” flasks with cork lids, and microorganisms still grew there.
A few years later (1765 - 1767), Lazzaro Spallanzani, an Italian abbot and biologist, tried several variations on Needham’s soup experiments. First, he boiled soup for one hour, then sealed the glass flasks that contained it by melting the mouths of the flasks shut. Soup in those flasks stayed sterile. He then boiled another batch of soup for only a few minutes before sealing the flasks, and found that microorganisms grew in that soup. In a third batch, soup was boiled for an hour, but the flasks were sealed with real-cork corks (which, thus, were loose-fitting enough to let some air in), and microorganisms grew in that soup. Spallanzani concluded that while one hour of boiling would sterilize the soup, only a few minutes of boiling was not enough to kill any bacteria initially present, and the microorganisms in the flasks of spoiled soup had entered from the air.
This initiated a heated argument between Needham and Spallanzani over sterilization (boiled broth in closed vs. open containers) as a way of refuting spontaneous generation. Needham claimed that Spallanzani’s “over-extensive” boiling used to sterilize the containers had killed the “life force.” He felt that bacteria could not develop (by spontaneous generation) in the sealed containers because the life force could not get in, but in the open container, the broth rotted because it had access to fresh air, hence the life force inherent in its molecules, which contained and replenished the life force needed to trigger spontaneous generation. In the minimally-boiled flasks, he felt the boiling was not severe enough to destroy the life force, so bacteria were still able to develop.
By 1860, the debate had become so heated that the Paris Academy of Sciences offered a prize for any experiments that would help resolve this conflict. The prize was claimed in 1864 by Louis Pasteur, as he published the results of an experiment he did to disproved spontaneous generation in these microscopic organisms.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.
One very important point to note here is that Pasteur did not seek to find an answer to the broad question, “Has spontaneous generation ever occurred?” Rather, as any good scientist, he limited his scope to a very narrow piece of the picture: “Is it possible for spontaneous generation to occur given the specific conditions under which Needham (and others) claims it will occur,” i.e. the “life force?” Interestingly, in 1936, when Alexander Ivanovich Oparin, a Russian scientist, published The Origins of Life, in which he described hypothetical conditions which he felt would have been necessary for life to first come into existence on early Earth, some scientists found it difficult to acknowledge that under the very different conditions which Oparin was proposing for early Earth, some form of “spontaneous generation” might indeed have taken place.